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4. Remarks

1. Introduction

The Dirac operator plays a significant role in quantum field theories. Its natural general-
ization with a cubic term arose from Kazama and Suzuki’s attempt to create a realistic
string model [l]. Their cubic Dirac operator appeared in the string model as a supercurrent
of a superconformal algebra. Ten years later, this kind of operator was discovered again
by Kostant []. He understood already that an Euler number multiplet from an equal rank
embedding of reductive Lie algebras [fJ] is nothing more than kernel solutions of the cubic
Dirac operator. It is also an accident that the lowest lines of the Euler number multiplets
for the 4-, 8-, and 16-dimensional coset spaces match with the known supersymmetric
multiplets [H].

Although, the Euler number multiplets are easily derived by the GKRS index for-
mula [j],

STRVA—S ®@Vi =) sgn(c)Uees,
ceC

they are not helpful for the formulation of any physical theory. In [{], Brink, Ramond and
Xiong used an algebraic method to determine the general kernel solutions or the Euler num-
ber multiplets of the Kostant operators on the cosets SU(3)/SU(2) x U(1) and F;/SO(9).
By realizing the gamma matrices as dynamical variables satisfying Grassmann algebras,
the Euler number triplets for SU(3)/SU(2) x U(1) and Fy/SO(9) were then written as chiral
superfields. A free action in the light-cone frame for both cosets was also formulated.

The intention of this paper is to determine the general kernel solutions of the Kostant
operators on the 8-dimensional quotients su(5)/su(4) x u(1) and so(6)/so(4) x so(2) by a
quantum mechanical method. We will briefly present how to construct the generators of
su(5) and so(6) Lie algebras and their irreducible representations (irreps). Only parts that
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Figure 1: The su(5) weight diagrams (a) of a 5-dimensional and (b) of a 10-dimensional irreps.

are used in constructing the Kostant operators will be mentioned. Then, the general kernel
solutions will be determined. Their extension to the case of a non-compact Lie algebra was
originated in 1999 by Ramond from his curiosity to know the FKuler number multiplets.

Some comments about them are made in the last section.

2. Kostant operator of the quotient su(5)/su(4) x u(1) and its kernel solu-
tions

2.1 The Schwinger’s oscillator realization of the su(5) Lie algebra

To construct the su(5) generators that satisfy Chevalley-Serre relations [f], we introduce
four types of Schwinger’s oscillators 73, 7;, s;, 5j, where i = 1 to 5 and j = 1 to 10,
including their adjoints [[i. Action of the raising oscillators 7’3 and s} on the vacuum state
in correspondence to the su(5) irreps 5 and 10 is shown in figure [la and fb, respectively.
By reversing all arrows in figure flla and [ib, and replacing ’I“;r and s} with 7’;[ and 5;[, they
become the weight diagrams of the 5 and 10 irreps. Although, the 10 and 10 irreps are not
fundamental and can be obtained from anti-symmetrization of 5 and 5 irreps, respectively,
it will be seen later that introducing the oscillators s;, 5; and their adjoints is a convenient
way in determining the general kernel solutions.

From the 5, 5, 10 and 10 weight diagrams, all positive root generators are

T = rirg + 3233 + 3135 + 82288 + (r,s — 7, 35)1,
TQ‘L = 7“57’3 + 5152 + 5§57 + S;SQ + (r,s — T, E)T,
T = TI?“g - 3133 + 3137 + 82289 + (r,s — T, E)T,
T, = 7“37’4 + 5254 + 5355 + 89810 + (r,s — )T,
Tt = rirg+ slsy — sksy 4+ sksio+ (1,5 — 7, 5)1,
Tb?L = TIT4—ST55—S£S7+86810+( — T )T,
T+ = r:{r5 + 3136 + sésS + 8;89 + (r,s — T, E)T,
Ty = rlrs + s}se + shss — shsio + (r,s — 7,3)1,



Ty = 7“57“5 + 5156 — 52;59 — sgslo + (r,s — 7,5)1,
T = TJ{T5 — 3138 — 3239 — 81810 + (r,s — 7,5)1, (2.1)
and all negative ones are
T, =(TH',  A=1,23 ..., 10 (2.2)

The Cartan subalgebra generators in the Dynkin basis,
H = Hy&y + Hoby + H3ds + Haoy = (Hy, Ha, Hs, Hy), (2.3)

are obtained from the following commutators:

Hy, = [T}, 17 ]

= N7+ NP + N + N = N§D = N§ = N = N — (5 = 7,5),
Hy = [T, T, ]

= N+ MO+ N 4 N N N N N 79),
Hs = [TI,TZ]

= N N M N N N NN (79
Hy = [T, T ]

= N+ NP + N 4 NS N N N N — (s = 5), (24)

where N, $T5 are the number operators. They are related to the Cartan generators in the
orthonormal basis,

E = h1é1 + hoég + h3és + hyéy + hsés = [hh ha, h3, hy, h5]7 (2'5)

as follows:

Hy=hy —hy, Hy = hy — hy, Hy = hs — hy, Hy=hy— hs. (2.6)

An su(5) irrep represented by its highest weight A in its vector space Vi can be
generated by action of the raising oscillators, TJ{, Fg, SJ{, §J{O, on the vacuum state

A= ()™ (sD) (51g) = (7)) ™10 >, (2.7)

where a; 234 are non-negative integers, called the Dynkin labels. The action of the Cartan

generators in the Dynkin basis on the highest weight gives their eigenvalues as follow:
HA = (ay,a2, a3, a4)A, (2.8)

and in the orthonormal basis as follow:
EA = [b15b2yb3ab4,b5]A7 (29)

where

1
by = 5(4(11 + 3ag + 2a3 + ayq),



1

by = 3(—CL1 + 3a9 + 2as3 + a4),
1

by = 3(—&1 — 2a9 + 2a3 + a4),

by = 5(_a1 — 2a9 — 3a3 + aq),

b5 == é(—al - 2(12 - 3(13 - 4(14). (210)
Note that by + by + b3 + by + b5 = 0 is due to the basis constraint.

Inside the su(5) generators, the generators Tf2,___,6 and Hj 23 form the su(4) Lie sub-
algebra and the generator hj is the generator of u(1) subalgebra. The other generators
T7i,8,9,10 lie outside the subalgebra su(4) x u(1) and they are used to construct the Kostant
operator of the quotient su(5)/su(4) x u(1).

2.2 Kernel solutions of the Kostant operator

To construct the Kostant operator on the 8-dimensional quotient space, the following 16 x 16
gamma matrices are needed:

I'=0®0 ®o; oy, I's =01 ®01®03®1,
'y =01 ®01®01® 09, [ =01®0®1&1,
I's =01 ®01®01 ® os, I'"=01®031®1,
Iy =01 ®01®02®1, s =09®1®1®1,

where 01 23 are the Pauli matrices and 1 is a 2 x 2 identity matrix. These gamma matrices
satisfy Clifford algebra

(Ta, Ty} =20, (101012 1). (2.11)

To associate with the generators of the quotient su(5)/su(4) x u(1), the gamma matrices
are complexified as follows:

1
§(F1 +ily) =0, ®0 @0 @0,

1 1 1
% = 5(1’3:&2’1‘4) =01®01® |:0'+®§(0-3:t1]-)+0'®§(0-3:|:1]-):|’
+ 1 . L1 _ 1
Yo = §(F5ﬂ:ZP6):0'1® o ®§(0'3:t]l)+0' ®§(0'3:F]l) ®]1,

1 1 1
71i0 = §(I‘7 +il'g) = [U-F ® 5(03 t1)+o0 ® 5(03 F ]l)} ®1®I1. (2.12)

Under these complexification, the positive spinor states of so(8) are | + & + +> and the
negative ones | — + + +>.

From the commutators of the generators of the quotient,

[T, T ) = hy — hs, [Ig, T3] = h — hs,
[Ty, Tyl = ha — hs,  [T1h, Tho) = h1 — hs, (2.13)



the generators T 789,10 are not generated. The structure constants of these transforma-
tions are zero. Hence, there are no cubic terms, which are composed of a product of three
gamma matrices associated with the structure constants. The Kostant operator of the
quotient su(5)/su(4) x u(1) is just

10
K=Y (T, +T)). (2.14)
a="7

This Kostant operator acts on a tensor-product space of the so(8) spinor representations
and the su(5) irrep
= |+ £+ +4>V), (2.15)

and there exist kernel solutions such that

Ky, =0, (2.16)

where \; is a weight in the vector space V). Equation (R.14) can be decomposed into

sixteen, independent equations as follows:

(T + T5 + T + Tip)¢y, =0,
(T —Tg + T, +Tf5)1p/\2 =0,
(T +Tg =Ty +Tip)¢y, =0,
(T; — T — Ty +T) . =0,
(T + T3 + Ty — Ty =0,
(Ty =Ty +Ty —Tip)by =0,
(T + Ty — )q,z% =0,
(Ty — T - TPy, =0,
(T +T5 + T + Tlo)T/),\/ =0,
(Ty — Ty + Ty + Ty, =0,
(T + Ty — Ty + Tip)ty, =0,
(T7 —Tf — Ty + Tio)ty, =0,
(T + T8 + Ty — Tf[))q,bx =0,
(T; =Ty +T4 — Tf{))sz =0,
(T + Ty = Ty = Tip)y, =0,
(17 - T))%/ = 0. (2.17)

One of the possible kernel solutions in the positive spinor space is as follows:



Ul = [+ +—— > ()" () (5™ (70 >,
Ui =+ =4+ > () (sh 2 (s)® )0 >,
Ul = [+ =+ = > (D) (sh)=(s]) s (7)) 0 >,
Ul =+ — =+ > () m (sl (5™ (7])™10 >,
Ul = [+ === > () (sh) = (s (7)o >, (2.18)

and in the negative spinor space as follows:

Uy = =+ > ) s sh) = () 0 >,
Uy, = | = = > )M (sl (8D (7)™ [0 >,
Uy = ==+ > D) (1) ()™ ()™ 0 >,
Uy, = | > ) )R )0 >,
Uy = ==+ 4> ()™ (D=l (7)™ 0 >,
vy, = ==+ = > )= sheEh= )™ >,
Wy = 1= = =+ > () (s () (7)™ 0 >,
Uy, = 1= === > ()" (D™ (sl ()10 > (2.19)

To get the kernel solutions in terms of su(4) x u(1), it needs to act on them by the
Cartan subalgebra generators, which in the Dynkin basis are

1 - _
Dy = hy —hy + 9 (fﬁlto—lhfza%o] - fj).—Q[VJ,Vg ])
1
= H1+§(0’3®03®]1®]1—]l®03®03®]1),
1 - _
Dy = hy = hs + 9 (fgfzhgﬁg]—fifshgﬁg])

1
:H2+§(]1®03®03®]l—]l®]l®03®03),

1 - _
Dy = hy = hy+ 5 (£ _shvd v ] = Flabd e )

1
:H3+_(11®]l®0'3®0'3—]l®]l®]l®o'3),

2
1 1 _ _ _ _
Dy = Shs+ 7 (F-shi a7 1+ Foshsh s ]+ Fshg v 1+ £l o))
1 1
= §h5—Z(1®1®1®03+1®1®0’3®O‘3+11@0'3@0’3@]1
+o3®o31®1). (2.20)

The structure constants in (.20) are read directly from (R.13). The generators Dy, Ds
and Dj are the Cartan generators of su(4) and the generator Dy is the Cartan generator
of u(1). When the Cartan generators act on the kernel solutions, they give

(D1, Dy, D3; Dy)ybf. = (a1, a2, a3; (bs — 2)/2))



( Yy, = (a1, a2 + a3+ 1,a45b3/2)1y, ,

( i, = (a1 + ag + a3 + 1, a4, —ag — a3 — ag — 1;b3/2)¢%

( ) (a1 +ag+az+1,—ag — a3 — 1,az + az + ag + 1;03/2)05,

( ) (a4, —az —ag — 1, —a1; b3/2)9}

( )by, = (a2, a3, a45 (br + 2)/2)9%.

( ) (—a1—ag—ag—a4—1,a1—i—ag—i-ag—i—l,—ag—ag—1;63/2)1/1;,
( ) (—ag—a3—1,—a1,a1+a2+a3+a4+1;bg/2)1/z;;,

(D1, D2, D3; Da)ipy, = (—a3 = as — 1, —ag, —ay; (ba = 1) /2)10 ,

( ) (—ay —az — 1,04 +a2+a3+1,a4;(b2+1)/2)¢;/2,

( ) (—a4, —az,—a; —az — 1; (b + 1)/2)¢;é,

( )1/1;21 = (ag,—a1 —ag —az — l,a1 +ag + ag + aq + 1; (ba + 1)/2)¢A_§1,

( Wy, = (a3+a4—{—1,—a2—a3—a4—1,—a1;(b4—1)/2)¢;/5,

( ) (a1 + a2 + 1,a3, a4; (b2 + 1)/2)7/);/6,

( ) (—ag,a2+a3+a4+1,—a1—ag—ag—a4—1;(b4—1)/2)zp;,7,

( )w;é = (a1,a2,a3 + ag + 1; (by — 1)/2)¢;é. (2.21)

In case a1 = ag = a3 = aq = 0, the kernel solutions (R-2])) can be grouped in terms of su(4)
dimensions as follows:

¢y, ~ (0,1, 0)
w;tl ~ ( 17 _17 1)0
¢+ ~ (_17 07 1)0
1., =97 ~(0,0,00_1, 6p={ "7 , 1, =47 ~(0,0,0),
1 ZZ)AI ( ) ) 1 0 w;\; ~ ( 1’ 0’_1)0 1 ¢)\6 ( )1
Py~ (=1, 1,=1)
w;\; ~ ( 07 _17 0)0
1/1;/1 ~ (=1, 0, 0)_1/9 ¢;é ~ (1,0, 0)19
Yy, ~(1,=1, 0)_1/9 Yy ~ (=11 0)1p
4 40 = - ; 410 = i -
1/1)\,7 ~ (0, 1,=1)_y)9 ¢,\§1 ~(0,=1, 1)1
1/1;8 ~ (0,0, 1)y ¢;§ ~ (0, 0,=1)19

Since the Dynkin labels aj 2 3 4 are non-negative, the direct sum of the su(4) highest weights
+ + + - -
Yy, ® Uy, BYy, @ ¢)\é S 1/)/\,6, (2.22)

or in terms of its Dynkin labels,

(a1,a2,a3)p5—2)/2 © (a1,a2 + a3z +1,a4)y, /2 © (az, a3, as) @, 4+2)/2

©(a1,az,a3 +as + 1)p,—1y2 © (a1 + a2 + 1, a3, a4) (b, 41) /2, (2.23)

forms the Euler number multiplet.
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Figure 2: The so(6) weight diagrams (a) of a 6-dimensional vector (b) of a 4-dimensional co-spinor
and (c¢) of a 4-dimensional spinor representations.

3. Kostant operator of the quotient so(6)/so(4) x so(2) and its kernel solu-
tions

3.1 The Schwinger’s oscillator realization of the so(6) Lie algebra

To construct the generators for so(6), we introduce four types of Schwinger’s oscillators

ri, Ti, Sj, 8j, where i = 1,2,3 and j = 1,2, 3,4, including their adjoints. Action of the

raising oscillators rj , Fj , sl-L

irreps 6, 4. and 4, is shown in figure fa, flb and fe, respectively. Although, the 6 irrep
is not fundamental and can be obtained from an anti-symmetric product of two copies of

and §}L. on the vacuum state in correspondence to the so(6)

either 4. or 4, irrep, it will be seen later that introducing the oscillators r; and 7; is an
easy way to determine the kernel solutions of the Kostant operator.
From the weight diagrams of so(6), all positive root generators are

T = nrz +5253 +(rs - 7,8,

T, = T27‘3+S 52—|—(7’ — 7,5

T = 7”57“3 + 3334 + (r,7, s — T, §)T,

T4+:7“J{3—553—(r 7’§)T,

T = TJ{Tg + 3234 —(r,7,s — 7,757,

Ty = —7‘1[7“2 + 8184 + ( — 7,1, 5)1, (3.1)
and all negative root generators are

Ty =(TH',  A=1,23 ...,6 (3.2)
The Cartan subalgebra generators in the Dynkin basis,

H = Hy&y + Hods + Hss = (Hy, Ho, Hs), (3.3)

are obtained from the following commutators:

Hy = 17,77 = N + NP — N — N = (r,5 — 7, 5),
Hy = [T5, Ty ] = NS + N = NSO = N — (r,s — 7,5),



Hy = [T, T = N + N - N - NS — (r,7, s — 7,1, 5). (3.4)
They are related to the Cartan generators in the orthonormal basis,
E = h1é1 + hoéy + hgég = [hl, h2, hg], (3.5)

as follows:
Hi =hy — hy, Hy=ho — hs, H3 = hy + hs. (3.6)
For an so(6) irrep, its highest weight is
A= (r))* (s})"2(s)) 10 >, (3.7)

where a2 3 are non-negative integers. Action of the so(6) Cartan generators in the Dynkin
basis on it yields
ﬁA = (al, as, ag)A, (3.8)

and in the orthonormal basis

-

AA = [by, by, bs]A, (3.9)

where

1
by = =(ag + az) + ay,

2
1
by = §(a3 + az),
1
b3 = 5(&3 - ag). (310)

Inside the so(6) generators, the generators Ti% and H; ¢ form the so(4) Lie subalgebra
and the generator hg is the generator of so(2) subalgebra. The other generators Tf& 4,5 lie
outside the subalgebra so(4) x so(2) and they are used to construct the Kostant operator
of the quotient so(6)/so(4) x so(2).

3.2 Kernel solutions of the Kostant operator

To construct the Kostant operator of the quotient so(6)/so(4) x so(2), the gamma matrices
used here are

1
~(T3 4 iTy),
2
1 , 1 .
i = 5(Ts £ 1l), vE = 5 (7 & Ts). (3.11)

1 .
vy = 5 (1 £iT2), 5=

From the commutator of the generators of the quotient,

[T5F, Ty ] = ho —hs, [I5,T5) = ha + hs,
(1,77 ) = ha = hs, (T3, T3] = ha + hs, (3.12)

the generators T;E:2 345 are not generated. The structure constants associated with these

transformations are zero. Hence, the Kostant operator is just

5
K=Y (T, +7 1)) (3.13)
a=2



A vector space of the Kostant operator is %f = |+ ++ +>®V). Here, V} is the vector
space of the so(6) irrep with its highest weight A. For the kernel solutions

Ky, =0, (3.14)

where )\; is a weight in the vector space Vj. It is noted that the derivation of the kernel
solutions 1/1;; and w;rg in this quotient is not straightforward as the one in su(5)/su(4) xu(1).
At first glance, the following two equations,

(T + Ty =Ty + T, =0,

(T, =T =T —T5 )Yy, =0, (3.15)

have kernel solutions as follows:

Yy, =+ +—+>10>,
Pf =l+—-—=—>0>. (3.16)

These solutions are true only when a; = a2 = az = 0. We fix this problem by twisting

their spinor states and obtain the general kernel solutions in the positive spinor space as

follows:

Ul =+ 4+ > ) sD = (5D ™[0 >,

Uf, = [+ 44— > D (she (0 >,

Uf, = [+ — == > @hr(she )0 >,

Ui = [+ 4+ — = > () (sh) 2 (5[0 >,

Ul = [+ =+ + > (7)) (sh)2(5]) [0 >,

Ul =14+ =+ = > () (sh) 2 (5]) [0 >,

Ul = [+ = =+ > ) (s (s])el0 >,

Ul = 4+ =+ > ) (sh) 2 (5])e 10 >, (3.17)
and in the negative spinor space as follows:

Uy = = > )M (s ()0 >,

Uy, = = = > )" )™ 6™ 0 >,

vy = == > ()M (s ()0 >,

Uy, = === > ()™ ()™ 6)™0 >,

Wy = ==t > (rh)n(sh ()0 >,

vy = | ==+ = > )M (sh)= ()"0 >,

Uy, = ===+ > D™ D™ )™ >,

Yy = === > ) (sh) 2 (50 > (3.18)

,10,



Dy = h1 —

= Hi+ -

o = h1+ he + =

1 - - - _
= Shs+7 (2 s a1+ Foshd w1+ fioshd a1+ f2shd )

1
h2+—

1
H{+ Hy + Hs + —

5(

(Fioibd o)+ Fabhd ] -

F Y ot

£ ohd3])

(f+ 1[’74774]+f+ 1[’75775]+f+ 2[72772]+f+ a3 73 ])

1R03003001+03R0301R14+1R11K o3

+1®1®o03®03),

1

2
1

2 4

—03®R031®1).

1
=-h3—-(10101R03-1®1Q03R03+1Q03R032 1

To get the kernel solutions in terms of so(4) X so(2), it needs to act on them by the

Cartan generators, which in the Dynkin basis are

(]l®0'3®0'3®]1+0'3®0'3®]1®]l—]l®]l®]l®0’3—]l®]l®0’3®0’3)

(3.19)

The structure constants in (B.19) are read directly from (B.1J). The generators D; and Dy
are the Cartan generators of so(4) and the generator Dj is the Cartan generator of so(2).

When the Cartan generators act on the kernel solutions, they give

= (
= (
(=
= (
(=
(=
= (
= (
(=
= (
(=
(=
(=
= (
= (
= (

ai, a1 +as +as + 2; b3/2)1/1)\ ,
a1 + az + a3z + 2,a1; —b3 /2)y
ar, a1 + ag + ag; b3 /2)Y5

ag, az; (b +2)/2)¥5, ,

ay —

ag,az; —

ag—a3—2,

al + an + as, —ai; _b3/2)¢A87

a; —

—ai; _b3/2)¢;\’—5’
a1, —a; —ag — a3 — 2;b3/2)Y

a3 — 15 a1 +az + 1’ _(b2 + 1)/2)1#;/1’

ai+az+1,—a; —as —1;—(by + 1)/2)1/1;/27

ay —

a; —

a3 —1,—a; —as — 1; —(bz + 1)/2)¢;é,
az —1,—ay —az — 1; (b + 1)/2)1#;2,

ar —az —1,a1 +az + 15 (b2 +1 /2)%?5,

ap+ax+1,—a; —az—1;(ba + 1

)
)
)

/25,

ar+as+1,a1 +ag+1;—(ba + 1 /2)1/1;,7,
a1+a2+1 a1 +az + 1; (bg—}—l)/Q)?,Z);,g

(3.20)

In case a1 = as = az = 0, the kernel solutions (B.2() can be grouped in terms of so(4)

dimensions as follows:

(17 1)1 = 1/};\—4
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~ (0, 0),



T/Jj\rl ~ ( 0, 2)0 T,Z);\FQ ~ ( 2, 0)0
(1,3)0 = § i, ~ (0, 0) , (3,1)0 = ¥i, ~ (0, 0) ,
w;\; ~ ( 07 _2)0 w;\; ~ (_27 O)O
(17 1)—1 = 1/};\; ~ ( 0, O)—17
T/J)Té ~ (1, Dy ¢;/7 ~ (1, 1))
Yy~ (1,=1)1 vy ~ (1L, =1)_1
2,2 = 6 , 2,2)_1/9 = 72 3.21
B22=0 Ly, 0 PP g Ly, o B
7/1;2 ~ (=1,=1)12 ¢;§ ~ (=1, =1)_1)9

Since the Dynkin labels a; 2 3 are non-negative, the direct sum of the so(4) highest weights,
+ + + + - -
Yy, ® Uy, © Uy, ® Yy, @%é 691/1)\/7, (3.22)

or in terms of its Dynkin labels,

(a2,a3) (b, +2)/2@ (a1, a1 + ag + a3 + 2)p, 2@ (a1 + az + a3 + 2,a1)_p, /2D (a3, a2) _ (5, 42) /2
(a1 +az+1,a1 + a3+ 1) p,q1y2 @ (a1 + a3+ 1,a1 + a2+ 1) _gyq1y2,  (3.23)

forms the Euler number multiplet.

4. Remarks

Kernel solutions of the Kostant operator of the 8-dimensional quotients can be easily de-
termined by the quantum mechanical method. The Euler number multiplet obtained in
terms of the diagonal subalgebra is the direct sum of the highest weights of the kernel
solutions, which appear only once. The Euler number multiplets presented in this paper
are exactly the same as derived by using the Weyl group elements of su(5) and so(6) that
are not in their subalgebras [B]. The lowest line of the Euler number multiplet for the
quotient su(5)/su(4) x u(1) is

11@41/2@60@4_1/2@1,1, (41)

and for the quotient so(6)/so(4) x so(2)
(1, 1)1 S5 (2, 2)1/2 D (3, 1)0 D (1, 3)0 S5 (2, 2)_1/2 S5 (1, 1)_1. (42)

There are many possible ways to interpret these Euler number multiplets. If so(2), which
is locally isomorphic to u(1), is viewed as a light-cone little group of ISO(3,1), then they
correspond to degrees of freedom of N = 4 Yang-Mills massless representation in 3+1
space-time. Similarly, if so(6), which is locally isomorphic to su(4), is viewed as a light-
cone little group of ISO(7,1), then they correspond to degrees of freedom of the massless
representation in 7+1 space-time. Lastly, if so(6) x so(2), which is locally isomorphic to
su(4) xu(1), is viewed as a subgroup of SO(6, 2), the anti-de Sitter group and the conformal
group, then they correspond to the massless representations in the 641 and 541 space-time,
respectively.
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Figure 3: The so(2,1) weight diagram associated with the discrete representations. Open and
solid circles along a horizontal line are the so(2, 1) weights of a j representation. In each horizontal
line, only the open circles, the lowest weight in the Vj+ and the highest weight in the V™, are the
non-trivial kernel solutions of the Kostant operator of the quotient so(2,1)/so(2).

The Kostant operator can be extended from a compact Lie algebra to a non-compact
one. Methods to construct the Kostant operator are similar in both the compact and
the non-compact Lie algebras. The simplest quotient of the non-compact Lie algebras is
s0(2,1)/s0(2). For details of the so(2,1) generators, commutation relations and represen-
tations, see [§. The Kostant operator,

K=0tT"+0 TT, (4.3)

acts on its vector space 1/1;[ = |+ > |j,m; >, where in each discrete representation j,
|mj| > j. Its non-trivial kernel solutions, whose corresponding states are shown as open
circles in figure [, are

Zf)jr:|+> |j’_j >, ¢;:|_> |J’]> (44)

These solutions are similar to the kernel solutions of su(2)/u(1). Another interesting non-
compact Lie algebra is so(4,2), the conformal group in the 3+1 space-time, whose spinors
are twistors [ff]. For the case so(4, 2)/so(4) xso(2), it is found that its lowest line of the Euler
number multiplet for the discrete representation is similar to that of so(6)/so(4) x so(2).

Finally, it is just a hope that the constructions of the Kostant operators and the
derivations of their kernel solutions presented here will be useful when someone wants to
oxidize a low-dimensional field theory to a higher-dimensional one or to reduce a high-
dimensional field theory to a lower-dimensional one [I{], or even to connect the Kostant
operators to the string theory [, [J].
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